Symbolic Artificial Intelligence

Symbolic Artificial Intelligence (Al) is at the heart of AORA. The article below gives an in-depth
explanation of the technology that we use. We have overcome the inherent weaknesses in
Symbolic Al, i.e. the knowledge engineering bottleneck and handling uncertainty. Thus providing a
robust full explainable platform which handles uncertainty, e.g. missing data and, via our adoption
at the outset of Python has accelerated knowledge engineering with modern generative Al
toolsets.

Introduction: Defining Symbolic Al and its Core Idea

Symbolic Artificial Intelligence (Al), a foundational paradigm in the field, seeks to replicate human-
level intelligence by manipulating symbols and applying logical rules. This approach centres on the
idea that intelligence can emerge from the manipulation of high-level, human-readable symbols
and logical rules. Unlike modern data-driven machine learning systems that learn patterns from
vast amounts of data, symbolic Al operates by explicitly representing knowledge in a structured
format that both humans and machines can comprehend. This method aims to bridge the gap
between human reasoning and machine intelligence through representations that are not only
processed by computers but can also be understood and verified by people. The essence of
symbolic Al lies in its ability to make inferences, drawing logical conclusions from existing
knowledge through predefined rules and axioms. This step-by-step, puzzle-solving approach
mirrors how humans often tackle complex problems using language and reasoning.

Fundamentals of Symbolic Al: Key Principles and Concepts

At the heart of symbolic Al lies the principle of symbolic representation. This involves the use of
explicit, human-readable symbols to represent knowledge and information about the world,
including entities, concepts, and the relationships between them. These symbols, which can range
from simple words to more abstract concepts, form the basis for logical manipulation and
reasoning within Al systems. Knowledge is encoded in a structured, symbolic format, allowing Al
systems to work with abstract ideas and relationships in a way that reflects human cognition.
Various techniques are employed for this representation, such as logic statements that express
facts and relationships, semantic networks that depict concepts as nodes with labelled links
indicating their connections, and frames that organize knowledge into data structures with slots
for attributes and their values. The emphasis on symbols that are understandable by humans is a
significant aspect, contributing to the interpretability of symbolic Al systems.

Another fundamental principle is rule-based inference. Symbolic Al systems utilize rule-based
systems and logical inference to derive conclusions and make decisions based on the symbolic
representation of knowledge. These systems apply rules of logic to manipulate symbols and draw
conclusions, much like a human might follow a set of instructions or a well-defined guidebook. A
typical symbolic Al system consists of a knowledge base, which contains a set of rules and facts,
and an inference engine, which operates on this knowledge to derive new information. Common
inference technigues employed include deductive reasoning, which draws logically certain
conclusions from given premises; inductive reasoning, which infers general principles from specific
examples; and abductive reasoning, which infers the most likely explanation for a set of



observations. The interaction between the knowledge base and the inference engine is central to
how symbolic Al processes information and arrives at solutions.

Explicit knowledge representation is also a defining characteristic of symbolic Al. In this paradigm,
knowledge is explicitly encoded and represented in a structured manner, often by human experts.
This contrasts with machine learning approaches, where knowledge is often implicitly learned from
data without direct human intervention. Ontologies, which provide a formal representation of a
set of concepts and their relationships within a specific domain, serve as a structural framework
for organizing this explicit knowledge. Similarly, semantic networks are used to represent and
organize knowledge in a structured manner, allowing Al systems to store, retrieve, and reason
about symbolic information effectively. The direct encoding of knowledge by humans makes the
system's understanding transparent but also places significant reliance on human expertise and
effort.

Finally, logical reasoning forms the bedrock of symbolic Al. It emphasizes the use of logical rules to
make inferences and draw conclusions from the represented knowledge. Formal logic provides a
rigorous framework for this, encompassing various types of logic such as propositional logic, which
deals with true or false statements; first-order logic, which extends this with quantifiers and
predicates; modal logic, used for reasoning about necessity and possibility; and temporal logic,
which allows reasoning about time-dependent statements. These different logical systems offer
varying levels of expressiveness and are applied based on the specific reasoning requirements of
the task at hand.

The Mechanics of Symbolic Al: Knowledge Representation and Problem-Solving
Techniques

Symbolic Al relies on a variety of knowledge representation techniques to encode information in a
structured and machine-processable format. Logic programming, exemplified by languages like
Prolog, represents knowledge as logical statements and rules, treating computation as a process of
logical deduction. Semantic networks provide a graphical way to represent knowledge, depicting
concepts as nodes and their relationships as labelled links, useful for modelling hierarchical
knowledge and relationships. Frames, introduced by Marvin Minsky, organize knowledge into data
structures with slots for attributes and values, offering a structured way to represent stereotypical
situations. Production rules express knowledge in the form of IF-THEN statements, defining
actions to be taken when certain conditions are met, and are fundamental to many expert systems.
Ontologies provide formal representations of concepts and their relationships within a domain,
standardizing and organizing knowledge to facilitate interoperability between different systems.
More recently, knowledge graphs have emerged as a powerful technique for organizing
information in meaningful, interconnected structures, establishing logical relationships between
concepts and enabling sophisticated reasoning across diverse knowledge domains. The choice of
knowledge representation technique depends on the specific requirements of the domain and the
type of knowledge being modelled.

Symbolic Al employs a range of problem-solving techniques that leverage these knowledge
representations to find solutions. Logical inference is a core technique, involving the derivation of
new knowledge from existing information using logical rules. This includes various forms of



reasoning such as deductive reasoning, inductive reasoning, abductive reasoning, and non-
monotonic reasoning, which handles situations where new information can invalidate previous
conclusions. Search algorithms are used to explore the space of possible solutions to a problem,
including techniques like breadth-first search, depth-first search, and the A* algorithm. The
generate-and-test method involves generating potential solutions and then testing them against
given constraints. Means-ends analysis is a strategy where the system identifies differences
between the current state and the goal state and then seeks operators to reduce those differences.
Problem reduction breaks down a complex problem into smaller, more manageable subproblems
that can be solved independently. Constraint satisfaction formulates problems in terms of
variables, their possible values (domains), and constraints that must be satisfied. Logic
programming itself can be seen as a problem-solving technique, using logical inference to find
solutions based on a set of facts and rules. Additionally, symbolic Al has been instrumental in the
development of automated theorem proving, which aims to automate the process of proving
mathematical theorems and logical propositions, and automated planning and scheduling
systems, which develop plans and schedules to achieve specific goals. The selection of appropriate
problem-solving techniques depends on the nature of the problem and the way knowledge is
represented.

Advantages and Limitations of Symbolic Al

Symbolic Al offers several key advantages. One of the most significant is its interpretability and
transparency. The reasoning process in symbolic Al is explicit and easy to understand, allowing
users and developers to trace the system's conclusions back to the specific rules and knowledge
that were applied. This transparency is crucial in domains where understanding the decision-
making process is vital, such as healthcare and finance. Symbolic Al also excels in explicit
knowledge representation, allowing complex knowledge to be formalized and structured in a way
that is easy to manipulate and reason about. This makes it particularly well-suited for tasks
requiring logical reasoning and inference, where rule-based decision-making is paramount. Within
the bounds of its defined rules, symbolic Al can be flexible and adaptable, as its behaviour can be
modified by updating the rules and the knowledge base. It is particularly effective in structured
problem domains where logical reasoning and explicit knowledge are key requirements. Unlike
machine learning, symbolic Al typically requires less training data, as it operates based on
predefined knowledge rather than learning patterns from large datasets. Furthermore, it facilitates
explicit knowledge sharing and reuse across different symbolic Al systems and integrates well with
formal logic and human reasoning processes. The ability to codify expert knowledge into rule-
based systems makes it highly valuable in domains where such expertise is crucial. The explicit
nature of knowledge representation also leads to easier maintainability, precision, and reliability
due to its deterministic nature, making it highly effective in areas with well-defined logic or
processes and allowing for straightforward debugging and improvement. Some advancements, like
Symbolic Machine Learning, even allow for learning from limited data and incorporating human
feedback.

Despite its strengths, symbolic Al also faces several limitations. It often struggles with handling
uncertainty and incomplete information that is common in real-world scenarios. It also has
difficulty in learning from large, unstructured datasets, which are the forte of machine learning



approaches. A significant challenge is the knowledge engineering bottleneck, where developing
comprehensive knowledge bases and rule sets can be labour-intensive, time-consuming, and
require significant domain-specific expertise. The performance of symbolic Al systems is heavily
reliant on the accuracy and completeness of the underlying knowledge representation.
Scalability can also be an issue, as the computational cost can increase significantly with the
complexity and size of the knowledge base and rule set, making it difficult to apply to very large
and dynamic environments. Symbolic Al systems can be prone to knowledge engineering biases
and brittleness, struggling with situations not explicitly covered by the predefined rules. They
typically have a limited ability to learn and adapt automatically, often requiring manual
programming and updates to incorporate new information or handle novel situations. Capturing
common sense reasoning, which humans possess implicitly, has also proven to be a challenge for
symbolic Al. Traditional symbolic reasoning can also suffer from monotonicity issues, where
adding new rules cannot undo previously encoded knowledge. Furthermore, these systems often
lack self-learning abilities to automatically extract patterns from data and can struggle with the
nuance and ambiguity inherent in real-world data and language. The effort and expertise required
to build and maintain these systems represent a significant hurdle in many applications.

Symbolic Al in Relation to Other Al Paradigms (Connectionist Al and Machine
Learning)

Symbolic Al and Connectionist Al (which utilizes neural networks) represent two fundamentally
different approaches to creating intelligent systems. In terms of knowledge representation,
symbolic Al uses human-readable symbols and logical statements, while connectionist Al
distributes knowledge across the weights of connections between artificial neurons. Regarding the
learning method, symbolic Al relies on manually encoded rules and knowledge, whereas
connectionist Al learns patterns automatically from large amounts of data. The strengths of
symbolic Al lie in its explainability, logical reasoning capabilities, and precise decision-making,
whereas connectionist Al excels at pattern recognition, adaptive learning, and handling large and
complex datasets. Conversely, the weaknesses of symbolic Al include the knowledge engineering
bottleneck and difficulties with uncertainty, while connectionist Al often suffers from a lack of
interpretability (acting as a "black box") and a need for vast amounts of training data. Historically,
these two paradigms were often seen as competing, representing different philosophies about
how to achieve artificial intelligence. However, the current trend in Al research is towards hybrid
approaches, such as Neuro-Symbolic Al, which aim to combine the strengths of both paradigms to
create more robust and capable systems. An analogy often used is comparing symbolic Al to a
chess grandmaster meticulously following strategies, while connectionist Al is akin to a player
learning from experience through repeated games.
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Similarly, when comparing symbolic Al to broader Machine Learning approaches, key differences
emerge. Symbolic Al does not typically require vast amounts of training data, unlike many machine
learning algorithms that learn from large datasets. In terms of the learning process, symbolic Al
relies on explicit rules defined by humans, whereas machine learning algorithms learn these rules
(in the form of patterns and correlations) directly from the data. Interpretability is a significant
differentiator, with symbolic Al providing transparent reasoning processes, while traditional
machine learning models can often be "black boxes" where the reasoning behind a decision is not
easily understood. However, a subfield called Symbolic Machine Learning aims to create
explainable models. The way knowledge is represented also differs, with symbolic Al using explicit
symbolic structures and machine learning often using statistical weight distributions learned from
data. In terms of adaptability, symbolic Al typically requires manual updates to handle new
situations, while machine learning models can often generalize to new scenarios and improve their
performance with more data. Symbolic Al is often best suited for problems requiring logical
reasoning, rule-based decision-making, and expert knowledge, whereas machine learning excels in
tasks involving pattern recognition and prediction from data. Despite these differences, symbolic Al
and machine learning are often seen as complementary approaches, and hybrid systems can
leverage the strengths of both, using symbolic Al for knowledge representation and reasoning and
machine learning for pattern recognition and learning from data.

The Current Landscape of Symbolic Al Research and Emerging Trends (including
Neuro-Symbolic Al)

The current research landscape in symbolic Al is significantly shaped by the emergence of Neuro-
Symbolic Al, which represents the integration of symbolic Al with neural networks (connectionist
Al). This hybrid approach aims to combine the strengths of both paradigms: the interpretability
and reasoning capabilities of symbolic Al with the learning and pattern recognition abilities of
neural networks. Neuro-Symbolic Al is viewed by many as a promising direction towards achieving
more robust and human-like artificial intelligence, as it can address some of the limitations of
traditional symbolic Al, such as handling uncertainty and adapting to new situations. Researchers
are exploring various ways to integrate these two approaches, including the development of logical
neural networks and methods for mixing neural and symbolic components. Applications of Neuro-



Symbolic Al are emerging in diverse fields such as traffic management, finance (fraud detection),
customer support (smarter chatbots), supply chain management, and environmental monitoring.

Several key areas are currently the focus of research in symbolic and neuro-symbolic Al.
Knowledge Representation is being advanced through the integration of symbolic and neural
representations and the development of sophisticated commonsense and domain-specific
knowledge graphs. Efforts in Learning and Inference are focused on combining learning and
reasoning processes to create more powerful Al systems. Explainability and Trustworthiness are
critical research areas, aiming to create Al models and reasoning processes that are interpretable
and reliable. Logic and Reasoning continue to be central, with research exploring the integration of
logic-based methods with neural networks. A relatively less explored but increasingly important
area is Meta-Cognition, which involves developing systems with self-awareness, adaptive learning
capabilities, reflective reasoning, self-regulation, and introspective monitoring. The field of
Explainable Al (XAl) is also a significant area of focus within symbolic Al, aiming to make the
reasoning of Al systems transparent to humans. Cognitive Computing, which seeks to create Al
systems that can mimic human cognition, often incorporates symbolic Al principles. Finally,
Commonsense Reasoning remains a long-standing challenge and an active area of research in the
field. The overall trend is towards developing more nuanced and context-sensitive intelligent
systems that can understand complex situations and adapt their reasoning strategies dynamically.

Looking towards the future, the direction of symbolic Al research seems to be heavily influenced
by the move towards hybrid intelligence, where symbolic Al is combined with other Al techniques,
particularly machine learning and deep learning. The goal is to develop more adaptable and robust
Al systems that can leverage the strengths of different approaches, ultimately leading to the
creation of Al that is more trustworthy and aligned with human understanding. This integration
holds the potential for breakthroughs in areas that require both pattern recognition and rational
decision-making, moving towards Al with more human-like cognitive processing abilities.

Conclusion: Reflecting on the Significance and Future of Symbolic Al

Symbolic Al, with its core principles of symbolic representation, rule-based inference, and explicit
knowledge representation, has played a pivotal role in the history of artificial intelligence. From
early theorem provers to the rise of expert systems, it demonstrated the potential of logical
reasoning and structured knowledge to tackle complex problems. While facing limitations in
handling real-world complexities and adapting to new information, its strengths in interpretability,
transparency, and logical reasoning remain highly valuable.

In the context of modern Al, symbolic Al is increasingly being integrated with other paradigms,
most notably connectionist Al and machine learning. This trend towards hybrid approaches,
particularly Neuro-Symbolic Al, reflects a recognition that combining the strengths of different
methods can lead to more powerful and versatile intelligent systems. Neuro-Symbolic Al aims to
bridge the gap between the explicit reasoning of symbolic systems and the pattern recognition
capabilities of neural networks, offering a promising path towards more robust and human-like
artificial intelligence.

Despite the rise of data-driven approaches, symbolic Al continues to be relevant in specific
domains where interpretability, rule-based decision-making, and expert knowledge are



paramount. Its foundational contributions to areas like knowledge representation, logical
reasoning, and problem-solving continue to influence the broader field of artificial intelligence. The
ongoing research in explainability, trustworthiness, and meta-cognition within symbolic and neuro-
symbolic Al indicates a commitment to addressing the challenges and pushing the boundaries of
what intelligent systems can achieve. As the field advances, the fusion of symbolic reasoning with
contemporary Al methodologies holds significant promise for unlocking new frontiers in the quest
for truly intelligent machines.



